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Video is everywhere

Video Analytics

Sensors

Diverse applications



Move to edge
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How many resources?
Usually, they are set to meet 4 fps instead of 2 or 3 fps!



Idle resources are common 

Can we leverage these idle resources to improve video analytics? 



Idle resources are common 

It is hard because they are non-deterministic and fragmented! 

Vigil: 19.03% < 45 infer/sec
Glimpse: 7.26% > 50 infer/sec 

Vigil Glimpse



Yes

How to leverage idle resources? 
A small portion of frames make a bad 

overall mAP for detectors!

opportunistic
enhancement

hard?
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How to improve hard samples? 
Off-the-shelf 

image enhancement may help?

Why they 
fail?

Human Visual Perception 

≠ 
Downstream DNNs Accuracy



Key takeaways 

Idle computing resources are common but highly dynamic and fragmented.

A small portion of hard frames lead to a bad overall accuracy.

Running off-the-shelf opportunistic enhancement methods is inappropriate.



Model-aware Adversarial Training 

Stage 1: learning a G (x) and D (x) for a 
specific downstream object detection.

Stage 2: a multi-exit mechanism 

Hard -> Generator -> Easy

Efficient Generator

Stage 0: find easy/hard samples for a 
downstream detector.

Model-aware easy/hard



Pre-training and fast adaptation

BDD100K 
(100K driving videos)

Pre-training

Unlabeled target videos

Unsupervised adaptation

P(Hard) -> Generator -> P(Easy)

x -> Discriminator -> Easy/Hard



Resource-aware scheduling

All frames are required to be processed within T.

All frames are assigned to the deepest enhancer.

Based on enhancement profiling results, we can 
select a frame with the minimal marginal accuracy 
gain and assign it to a weaker enhancer.

Repeat the last step until the total 
latency < T



Overview
 



Experiments
● Detectors: YOLOv3, Faster RCNN, EfficientDet-D0.

● Test platforms: Nvidia Tesla V100 and Tesla T4.

● Testing Dataset: UA-DETRAC and AICity.

● Video analytics pipeline:

● Glimpse: temporal pruning

● Vigil: model pruning

● NoScope: temporal pruning + model pruning



End-to-end results (Accuracy)

On UA-DETRAC, Turbo achieves 9.35%, 
11.34%, 7.27% mAP improvement on 
average for 3 models.

Usually, we can achieve the maximum mAP 
improvements on Vigil. It is because model 
pruning groups most hard frames for Turbo.

UA-DETRAC & T4 AICity & T4 UA-DETRAC & V100



End-to-end results (Idle GPU)

UA-DETRAC & T4



Summary
● Even on advanced video analytics pipelines, idle computing resources 

are common but ignored.

● Turbo selectively enhances incoming frames based GPU resource 
availability via a detector-specific GAN and resource-aware 
scheduling algorithm. 

● Turbo achieves 7.27-11.34% mAP improvements by judiciously 
allocating 15.81-37.67% GPU idle resources.


